
#citrt #RefreshCache

Getting Git

Chris Funk

Southeast Christian Church

What is Git?

Git is a distributed version control system.

What is Version Control?

• A system that records changes to a file or a set
of files over time, allowing you to recall specific
versions later.

• Three types
– Local

– Centralized

– Distributed

Localized

• Database local to a user
or machine that keeps
track of file
changes/versions.

• Designed for single user.

• Single point of failure.

• Example rcs.

Source: http://git-scm.com/book/en/Getting-Started-About-Version-Control

Centralized

• Single server that contains
the versioned files and a
user checks out files from
server.

• Downside – must be
connected to server to
checkout or commit.

• Examples: CVS, SVN, Visual
Source Safe

Source: http://git-scm.com/book/en/Getting-Started-About-Version-Control

Distributed

• Clients mirror/clone
remote repository to their
machines.

• Each “pull”/checkout is
essentially a copy of the
remote server.

• Clients merge their
changes back the
remote/origin

• Examples: Git, Mercurial
Source: http://git-scm.com/book/en/Getting-Started-About-Version-Control

Why do I need version control?

• Allows a user/team to see how a file or project has
progressed over time

• Allows a team to easily collaborate on a project
– Users can work on the same project or even file at the same

time

• A user can rollback a file/project to a specific commit or
date in time

• Features can be developed independently from each
other and merged together.

Why get Git?

• Each user has a cloned copy of the repository

• Commits and checkouts are fast

• Can work disconnected from remote server

• Integrates with many Application Lifecycle
Management (ALM) solutions

– Github, BitBucket, Assemblia, Redmine (plugin)

Where to get it?

• Git (with Bash tools) – http://git-scm.com

• Gui Based tools - http://git-scm.com/download/gui/

– SmartGit $79 (commercial) / Free (non-commercial)

– SourceTree Free

– GitHub for Windows/Mac/Unix

• We will cover command line and SmartGit

http://git-scm.com/
http://git-scm.com/download/gui/

Creating a new repository

• Use git init to create an
new repository

– git init <repository name>

What happened?

• A new (empty) repository was created with a
single branch called “Master”
– This is your main-line or Trunk branch

– As a rule “Master” should always contain production
code. (The code that is currently deployed).

– It is highly discouraged to commit directly to the
“Master” branch.

…there is an exception

• For your initial commit it is ok to commit your
initial .gitignore and Readme and license files to
master.

• .gitingore -> a file that contains files/directories
that should be ignored by source control.
– If you don’t know what to ignore… there are

templates.

Create Origin Repository

• Origin = the primary remote repository

• You can have an on premise Git server or use a
hosting/ALM provider.

• Will use GitHub as our example

• GitHub Demo

Connecting to Origin

• Add origin bookmark

– git remote add
<bookmark> <path>

• Push master branch to
origin

– git push –u <bookmark>
<branch>

Cloning an existing repository

• Clone = copy existing
repository from Git server.

– git clone <url> <local path>

– Local path is optional; by
default creates new folder
with repository name.

• Depending on repository
size it can take some time.

Staging and Committing Files

• git status – Lists files
to be committed

• git add <file> -
stages file for commit (all
new files must be staged)

• git reset <file>
cancels stage

• git commit commits
staged/updated files

Branches

• Branch = A branch represents an independent
line of development.

– i.e. I am working on a check-in block and Maxim is
working on refactoring a giving block

– We can work independently on separate branches
and then merge into a parent branch when
complete.

Branching (cont)

• There are many methodologies with branching, I
recommend GitFlow.

• Two branches live in perpetuity (Master and
Develop)
– Master = what is currently in production.

– Develop = In development/WIP branch

• Rest of branches have limited lifespan.

Branching - GitFlow

• Feature – feature that is in
development (feature-
{identifier})

• Release – Release candidate
(rel-{identifier})

• Hotfix – Emergency update
that can’t wait for next
release cycle (hotfix-
{identifier})

Working with Branches

• Create a new branch

– git branch <name>

• Checkout – make
head/working branch)

– git checkout <name>

• Create & checkout

– git checkout <name> -b

Working with Branches

• Delete a branch (make
sure head is a different
branch)

– git branch –d <branch>

• To delete from origin

– git push origin :<old
branch name>

Merging

• Checkout the branch that
you want to merge to

– git checkout <branch>

• Perform the merge

– git merge <branch>

There’s an easier way

• There are GUI based tools to work with Git.

• SmartGit demo

Using an ALM Tool

• There are several ALM tools on the market
– ALM = Application Lifecycle Management

• They allow you to track issues/feature requests
• View commit history
• Some include Wiki functionality
• GitHub is the most popular for open source
• SECC is moving to Bitbucket b/c they allow free private

repositories.

Learning tools

• Github provides a tutorial for learning Git
– https://help.github.com/articles/set-up-git/
– Training Kit - https://training.github.com/kit/
– Try Git (online) – https://try.github.io

• Git command cheat sheet
– https://training.github.com/kit/downloads/github-git-

cheat-sheet.pdf

• Git-SCM site http://git-scm.org

https://help.github.com/articles/set-up-git/
https://training.github.com/kit/
https://try.github.io/
https://training.github.com/kit/downloads/github-git-cheat-sheet.pdf
http://git-scm.org/

